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ABSTRACT 

We have generated 3D models of porous structures based on eight triply periodic surfaces (TPSs) and 

studied their thermal and mechanical properties. The TPSs were derived from topological network 

representation of zeolite crystal structures by a previously developed method. The resulting TPSs 

correspond to P, C(P) and IW-P topological types. We have developed software for the preparation of 

the TPS models for 3D printing, simulated the corresponding porous materials, and computed their 

physical properties. We have manufactured porous materials for three TPSs by 3D printing with styrene 

butadiene styrene and polyamide PA-12. PA-12 samples were formed from liquid phase and their 



 

Materials and Solidification                                                     http://mc03.manuscriptcentral.com/msolid 

2 

solidification occurs under UV radiation. Thermal and mechanical properties of manufactured samples 

were studied numerically and experimentally. The results of the modeling were found in good 

agreement with the experiment. 
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stiffness. 

 

1 Introduction 

Macroscopic cellular and porous structures with pores and cells of different types and sizes have 

received much attention in modern material science and engineering applications [1]. Ordered porous 

structures obtained on the basis of smooth triply periodic surfaces (TPS) including minimal surfaces 

(TPMS) with sufficiently complex and different topological and geometrical structures form a separate 

class among them [2–4]. This class of porous structures possess non trivial thermal-insulating, 

vibration-isolating, mechanical and other physical properties whereby they became the objects of 

intense theoretical and experimental studies [5–14]. Notice that it is possible to construct new 

composites and metamaterials on the basis of these structures by filling the pores with materials 

showed the necessary properties different from ones of the frame material [11]. The development of 

additive manufacturing (AM) technology in recent years given new impulse to study the structures 

obtained from TPS [8,10]. AM allows the production of thin-walled products with complex topological 

types and geometrical shapes. This is achieved with layer-by-layer solidification at optimal conditions 

for specific materials, as a result, this enables lower shrinkage of the sample. At the same time the 

current utilization of TPSs for the development of porous structures is limited to a small number of 

TPSs suitable for AM, thus emphasizing the importance of generating new TPSs [15]. Recently [16–

19], we proposed a novel approach for creating TPSs and corresponding porous structures based on a 
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topological description of atom networks of the natural crystals in particular zeolites. In fact, our 

method gives the possibility to obtain unlimited quantity of different TPSs from periodic network 

templates by the ToposPro software package [20]. If a finite thickness is given to the generated surface, 

it can be produced by AM technology and its mechanical properties can be studied experimentally or 

estimated in the most common software packages like ANSYS [21]. Several recent studies have also 

focused on creating new TPS/TPMSs [23–27]. In particular, another method, which uses the ToposPro 

package was proposed to simulate porous space [23]. In this method, a TPS is constructed as a surface 

of equal electron density in atom lattice of some crystal which is calculated in DFT approach. Due to 

this the method involves optimizing the atomic structure for DFT calculations and thus requires a lot 

of computer time. Note that developed by us method, which is purely based on geometric and 

topological properties of a periodic network, works on arbitrary periodic frameworks and hence can 

be adapted both for natural crystals and of any mathematically generated networks [26] as templates. 

One more method for generating porous structures uses Voronoi diagrams and Delaunay triangulations 

[24], but it is limited to disordered two-dimensional structures, while our approach produces ordered 

3D porous structures. Known TPMSs can also be used to generate porous materials [25,27] but in this 

case, minimal surfaces must be specified by analytical formulas, and the minimality of the resulting 

structures is not always guaranteed [25]. In the present work, we produced eight models of porous 

structures from various zeolite Crystals [22]: Sodalite (SOD), Rhodonite (RHO), Linde Type A (LTA), 

Mg-BCCT (BCT), STA-6 (SAS), Merlinoite (MER), MAPO-39 (ATN), CoAPO-CJ62 (JSW). The 

zeolite-based structures generated varied by topological type, genus, spatial groups, topology of 

labyrinth nets, Hopf?s nets topology, and balance properties. The choice of zeolites and the 

corresponding TPS in this work was conditioned by the problem of establishing correlations between 

the topological features of the surface and its thermal and mechanical properties. We have developed 

software for the preparation of the TPS models for 3D printing, simulated the corresponding porous 

structures, and computed their physical properties. Further, we created 3D printed samples of different 
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shapes and sizes using SBS filament and PA-12 polyamide for three zeolite-based structures (SOD, 

MER and JSW). At the next stage, we studied thermal properties of the obtained new structures, in 

particular, temperature fields, heat flow fields and effective thermal conductivity coefficients. An 

experimental investigation of the samples obtained by 3D printing methods was also carried out. 

Experimental measurements of the thermophysical properties were shown to be in good agreement 

with the theoretical calculations. Along with the thermophysical properties, the mechanical parameters 

of cuboid porous samples from PA-12 were measured and their good agreement with values calculated 

in the ANSYS software was founded. The structure of the paper is as follows. In Section 2 the method 

for generating triply periodic nets using the ToposPro program package and the technique for the 

construction of porous structures based on these nets in a format available for additive manufacturing 

are described shortly. Section 3 is devoted to numerical modeling of thermal properties for the 

discussed in the paper porous structures as well as the experimental verification of used numerical 

models. In Section 4 the numerical modeling and experimental measurement of mechanical properties 

are discussed. In the Conclusion the main results of the work are summarized. 

 

2 Generation of porous materials from TPS derived from atomic nets of crystals 

In this paper, the procedure for generation of porous structures from TPS is implemented into a 

software package based on a new network approach for generating triply periodic surfaces from crystal 

structures of chemical compounds [18]. This approach which was implemented in ToposPro package 

includes these consecutive steps: 

(i) Firstly, using universal Domains algorithm [28] (Fig. 1 left) a periodic net is constructed for a 

given crystal structure.  

(ii) Secondly, a natural tiling for obtained periodic net is generated [29]. The aforementioned tiling 

comprises polyhedral cages, referred to as natural tiles, that are surrounded by periodic nets’ rings 

(natural tile faces) and designated by face symbols [Ax , By , Cz , . . . ], where A, B, C, . . . are sizes of 
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the rings and x, y, z, . . . are numbers of the rings of a given size in the tile. Symmetry-independent 

rings of a particular size A are designated Aa, Ab, Ac, . . . (Fig. 1 middle). The inherent characteristic 

of natural tiles is their role as fundamental (minimal) cages from which any other cage can be 

constructed by combining multiple natural tiles.  

(iii) Finally, creating TPSs through the process of enumerating all possible ways of eliminating 

natural tile faces from the initial tiling, while ensuring that the set of remaining faces adheres to three 

specific conditions:  

(a) decoration condition mandates that all vertices and edges must be positioned on the TPS;  

(b) edge condition which requires that any edge of the net is shared by strictly two faces from the 

set;  

(c) vertex condition is used to make sure that all edges having a common vertex belong to different 

pairs of faces. These conditions allow the resulting series of faces to form a single TPS without self-

intersections (Fig. 1 right). 

 

Fig.  1 Zeolite merlinoite (MER) crystal structure: (left) a fragment of periodic net with the unit cell; 

(middle) three independent natural tiles with face symbols [42, 84] (left tile), [412, 86] (central tile) and 

[48, 82] (top right tile); the tiles are confined by three kinds of 4–membered (4a, 4b, 4c) rings and three 

kinds of 8–membered (8a, 8b, 8c) rings of the net; (right) the triply periodic surface generated by 

removing two kinds of 4–membered rings (4a and 4b) and one kind of 8–membered ring (8b) and 

represented by the 4c–,8a– and 8c–facets. 

The resulting TPS divides the space into two non-intersecting parts (labyrinth), and if they are 

isomorphic to each other the TPS is considered to be balanced [30]. Geometrically, the obtained TPS 

has a faceted structure and requires smoothing to obtain the minimum mean curvature. Since the 
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number of periodic nets is infinite and more than 800,000 of them are stored in the TopCryst database 

[26], this approach has been used as a template for generating porous structures and metamaterials. In 

addition, a database of computer models of some newly discovered TPS has been created [18]. In this 

study, we fabricated porous materials using information from this database (Fig. 2).  

 

Fig.  2 Visual representation of the method used to generate porous material model from TPS based 

on the zeolite merlinoite (MER) structure using ToposPro, Porous 3D and to numerically study its 

mechanical and thermal properties with ANSYS software. 

Let’s discuss this procedure in more detail. The TPS facet model generated by ToposPro is output 

to a textual .t3g file, where the coordinates of all facets (rings) are given (Fig. 3): 
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– Obtained from periodic net tiling name (MER) and all of its independent (symmetry inequivalent) 

rings (4c, 8a, 8c), which were used to compose the tiling (Fig. 3, line 1).  

– Unit cell parameters (Fig. 3, lines 2–3). 

– Facet (tile) vertices data (coordinates in fractions of the unit cell dimensions) starting with 

keyword RING and its’ face symbol (Fig. 3, lines 5–8). This data is present for all facets in the unit 

cell. 

 

Fig.  3 The .t3g file generated by ToposPro for a TPS represented by eight (4c) 4– membered, eight 

(8a) and four (8c) different independent 8–membered rings of the periodic net obtained for the zeolite 

merlinoite (MER) crystal structure as well as dimensions and angular parameters of the unit cell. 

Previously developed Porous 3D software [31] was used to visualize, translate, smooth and thicken 

the TPS model imported from ToposPro .t3g file. The resulting models can be exported to 3D printable 

STL–format file commonly supported by many computer–aided design and engineering software. We 

should note that STL format is used in our algorithms only in exporting the model to various CAD, 

CAE programs or for 3D printing and we do not manipulate the geometry of the output STL file. The 

following algorithms are implemented in this software: 

– Model translation algorithm (Fig. 4). The unit cell of the imported TPS frame is a translationally 

in-dependent part of an infinite TPS. Obtaining larger parts of an infinite TPS implies parallel 

translation in space in rectangular coordinate system (x, y, z) of copies of a unit cell and “gluing” 

their boundaries. The following method is implemented analytically. Let M be the model that needs 
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to be translated and 𝑣𝑖 ∈ 𝑀 is a vertex of this model with (𝑣𝑥
𝑖 , 𝑣𝑦

𝑖 , 𝑣𝑧
𝑖,) coordinates. To translate M, 

we need to calculate the translation matrix T based on the unit cell parameters a, b, c, α, β, γ: 

 𝑇 =  (

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

), (1) 

𝑡𝑥  =  [
𝑎

𝑏 cos 𝛾
𝑐

] , 𝑡𝑦  =  [
𝑎 cos 𝛽
𝑏

𝑐 cos 𝛼

] , 𝑡𝑧  =  [
𝑎 cos 𝛼

𝑏 cos𝛽 cos 𝛾
𝑐

]. 

So, using calculated matrix we can translate copied M vertices in any direction along 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 like 

this: 

 𝑇𝑀(𝑖)  =  (

1 0 0 𝑛𝑥𝑡𝑥
0 1 0 𝑛𝑦𝑡𝑦
0 0 1 𝑛𝑧𝑡𝑧
0 0 0 1

)

(

 
 
𝑣𝑥
𝑖

𝑣𝑦
𝑖

𝑣𝑧
𝑖

1 )

 
 
 =  

(

 
 
𝑣𝑥
𝑖 + 𝑛𝑥𝑡𝑥
𝑣𝑦
𝑖 + 𝑛𝑦𝑡𝑦

𝑣𝑧
𝑖 + 𝑛𝑧𝑡𝑧
1 )

 
 
, (2) 

𝑀𝑐𝑜𝑝𝑖𝑒𝑑 = [

𝑣𝑥
𝑖 + 𝑛𝑥𝑡𝑥
𝑣𝑦
𝑖 + 𝑛𝑦𝑡𝑦

𝑣𝑧
𝑖 + 𝑛𝑧𝑡𝑧

], 

where nx, ny, nz is the number of models needed along translation vector (Fig. 4). 

– The algorithm for facet smoothing (Fig. 4) utilizes both Laplacian–based and optimization– based 

methods to minimize the absolute difference between the maximum and minimum values of mean 

curvatures calculated at each vertex of the surface mesh [18]. The mean curvature is calculated with 

the Delaunay triangulation and theory of normal cycles of differential geometry [32]. We have not 

used the Laplacian, Taubin or others smoothing algorithms in their pure form because these 

algorithms do not account for the mean curvature of the surface. The smoothing algorithm should 

be applied to the surface mesh, which has no volume, thus there is no need to preserve the volume 

of the object as the mentioned algorithms require. We have checked our algorithm on the surfaces 

reported in Ref. [18] and found effect accuracy with the average deviation of the calculated mean 

curvature of 0.01%. 
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– Assigning surface thickness is carried out by moving copied points of the surface along their 

normal vector to the specified distance and restoring surface faces on the moved points. Then, 

additional polygons are created to fill the gap between the original surface and the copy, resulting 

in a contiguous volume (Fig. 5). We limit the thickness value of the model to avoid self–

intersections in the case of too drastic change of the surface curvature. We plan to improve the 

algorithm and to remove this limitation in the next version of the Porous 3D software. 
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Fig.  4 Translating and gluing 27 unit cells of a TPS model generated from the zeolite merlinoite (MER) 

net. The boundaries of the internal unit cells (highlighted in light blue on the left) were removed after 

translating. 
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Fig.  5 Assigning thickness to a smoothed TPS model generated from the zeolite merlinoite (MER) 

net. 

The surfaces constructed in this work by the described method are shown in Table 1 and Fig. 6 The 

thermal and mechanical properties of these surfaces are studied below. In Ref. [19] we investigated 

the mechanical properties of structures based on only minimal surfaces generated from zeolites by our 

method. In the present work the choice of zeolites for constructing surfaces was carried out in terms 

of establishing correlations between physical properties and surface symmetry properties. Therefore, 

we chose two zeolites with a high cubic symmetry of atomic networks (space group No. 229), one 

zeolite with a network close to them (space group No. 221), four zeolites with a lower tetragonal 

symmetry (space group No. 139) and one zeolite with sufficiently low rhombic symmetry (space group 

No.61). Using the ToposPro software package, the topological structures of the resulting surfaces were 

established.  

Table 1 Topological and geometrical features of TPSs used in this work (Fig. 6). 

Surface 

(zeolite) 

TPMS 

analog 

Space 

group 
Genus 

Labyrinth 

nets 

topology 

Hopf ring net (HRN) topology 
Balanced 

property 

Tiling rings 

types 

SOD P Im-3m 3 pcu; pcu (nbo) True 6a 

RHO C(P) Im-3m 9 ftw;ftw 
(142, 16, 22, 283, 322, 36, 44, 46, 

50, 52, 56, 58, 603, 62, 66, 68–c) 
True 4b, 6a, 8a 

LTA P Pm-3m 3 pcu; pcu (nbo) True 4b, 6b 

BCT P I4/mmm 3 pcu; pcu (nbo) True 8c 

SAS P I4/mmm 3 pcu; pcu (nbo) True 4a, 4b, 6a 

MER I-WP I4/mmm 4 nbo;bcu (4, 63, 82, 12, 14–c) False 4c, 8a, 8c 

ATN P I4/mmm 3 pcu; pcu (nbo) True 4a, 8b 

JSW P Pbca 3 pcu; pcu (nbo) True 
4a, 4b, 4c, 

6c, 6d 
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As can be seen from Table 1, surfaces belong into three well known types: P–surfaces, 

complementary to P–surfaces (C(P) or Neovius surface) and I–WP surface [18,33]. All obtained 

surfaces have a system of two non–intersecting labyrinths with different properties of balance. 

 

Fig.  6 Unit cells of TPSs present in this work. a) TPS (P surface) based on CoAPO–CJ62 (JSW) 

zeolite; b) TPS (I-WP surface) based on Merlinoite (MER) zeolite; c) TPS (P surface) based on STA–

6 (SAS) zeolite; d) TPS (P surface) based on Linde Type A (LTA); e) TPS (P surface) based on 

MAPO–39 (ATN) zeolite; f) TPS (P surface) based on Mg–BCCT (BCT) zeolite; g) TPS (C(P) 

Neovius) based on Rho (RHO) zeolite; h) TPS (P surface) based on Sodalite (SOD) zeolite. 

Now let’s discuss the relationship of surfaces from Table 1 with surfaces from the minimal surfaces 

database [34] which implements the methods from Ref. [33] Only the SOD surface from Table 1 is 

fully equivalent to the corresponding surface from Ref. [34] The rest of the surfaces, although having 

the same topology as the corresponding surfaces from Ref. [34] differ from them geometrically and 

are new. We note once again that the surfaces obtained in this work are closest to the minimum ones, 

since in our facet smoothing algorithm (see Fig. 5), the condition of the minimum modulus of mean 

curvature is implemented. Using SpaceClaim module of ANSYS [21] porous structure is converted to 

solid–state geometry (Parasolid) format to numerically investigate its physical properties. 

All calculated topological and geometrical features of 98 TPSs described in Ref. [18] 

(Supplementary Information) were used to determine which known TPMSs can be generated with the 
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zeolite dataset. Let us briefly recall the definitions of the topological features used. Labyrinth nets 

topology is the topology of the graph representing two independent pore systems of a generated TPS. 

Hopf ring net (HRN) topology is the topology of the graph whose vertices coincide with the 

barycenters of the TPS rings and the barycenters of catenated rings, which are built on geometrical 

centers of the rings of the labyrinth net. HRN is used to determine the method of interweaving of the 

labyrinth nets. TPS is balanced if it divides the space into two congruent labyrinths. All features 

described above are crucial for determining known TPMS analogs of our surfaces, i.e. P, C(P), I–WP, 

F–RD, G, H and other TPMSs. 

Below we consider how this method is applied to the investigation of thermophysical and 

mechanical properties of the TPS from the Table 1. Note that other recent studies [5,6,8–12,35–37] 

where the porous structures were modeled from TPS applied an analytical formulae for constructing 

these known TPS. All of the surfaces generated by our method (see Table 1) cannot be created by 

existing methods especially new minimal surfaces. The described method constructs TPS based on 

crystal structure so surfaces are unique in their geometry even if they are similar in their topological 

properties to existing ones, and are not described by any analytical expressions. 

The presented method does not require any analytical representations to generate TPSs and new 

TPSs obtained by our approach also don’t have any exact formulae yet. Therefore, the theoretical part 

of our study included the following stages: 

1. TPS frame is generated from the periodic net obtained from crystal structure data us-ing 

ToposPro and then is exported into a .t3g file.  

2. Imported in Porous 3D TPS is then processed by developed algorithms and saved as .stl model 

file.  

3. Using ANSYS we numerically investigate thermophysical and mechanical properties of 

obtained .stl model as described below. 
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3 Experimental and numerical study of thermophysical properties of the obtained porous 

structures 

In this paper we investigate effective conductivities of porous structures with novel triply periodic 

solid shell architecture. Despite the ordered macrostructure, the thermal properties of porous materials 

cannot be considered isotropic. Thermal conductivity values that characterize heat transfer are different 

at different points of medium and depend on heat transfer direction. 

Thermophysical properties for isotropic bodies can be identified by solving the inverse thermal 

conductivity problem. However, the problem becomes much more complicated for anisotropic 

materials, which is the case of our study since the periodic TPS structure intends a high degree of 

anisotropy of the sample. 

Fourier’s law is formulated in an anisotropic media as 

 𝐪 =  −𝐤∇𝑢,  (3) 

where q is heat flux vector, 𝐤 = [𝑘𝑖𝑗](𝑖, 𝑗 =  1,3̅̅ ̅̅ ) is symmetric thermal conductivity second-rank 

tensor and ∇𝑢 is temperature gradient.  

With Eq. (3) energy conservation equation (heat equation) can be written as follows 

 𝜌𝑐𝑝
𝜕𝑢

𝜕𝑡
= −𝑑𝑖𝑣(−𝐤∇𝑢) + 𝑞𝑉 , (4) 

where 𝑐𝑝 is specific heat capacity, 𝜌 is material density, 𝑡 is time and 𝑞𝑉 is internal heat energy per 

unit volume at each point and time. 

Since thermal conductivity −𝐤 is tensor, the heat fluxes at each point of the area under study are 

different in different directions. It follows from Eq. (4) that to account for the properties anisotropy 

one needs to solve multidimensional equations containing mixed differential operators. Additional 

difficulties arise when setting the boundary conditions for Eq. (4) since the heat fluxes need to be 

determined taking into account the boundary behavior, i.e., direction cosines to the boundary with 

respect to the selected coordinate system [38]. 
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The difficulties mentioned above significantly limit the possibilities of applying classical analytical 

methods for the theoretical evaluation of the thermal conductivity tensor elements [𝑘𝑖𝑗](𝑖, 𝑗 =  1,3̅̅ ̅̅ ). 

In this regard, various methods of medium homogenization are used to describe the temperature state 

of anisotropic media: RVE, MsFEM, etc. 

Thus, in Ref. [39] the representative volume element (RVE) method - is introduced into 

consideration, where RVE is the minimum volume of an anisotropic body that reproduces its thermal 

properties. In Ref. [40] M. I. Epov et al. use the multiscale finite element method (MsFEM), etc. In 

this paper, we use the RVE method of medium homogenization. Note that in our approach the 

computer representation of new porous structures enables one to easily implement any method of 

medium homogenization, including the RVE method although for most of our surfaces there is no 

representation in the form of an analytical expression. 

 

Fig.  7 RVE–scheme with the inscribed solid shell. a) is merlinoite (MER–based) structure, b) is 

CoAPO–CJ62 (JSW–based) structure. u1, u2 are the boundary temperatures; σ is the area of the unit 

cell in cross section. 

In order to determine the integral thermal characteristics of a unit cell element, for example, of the 

MER–based TPS (Fig. 7) along z axis, we assume that thermophysical properties at any point in the 
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unit cell volume are isotropic. That is, we consider the volume under study to be filled with a 

homogeneous medium with constant effective thermal conductivity and effective coefficient of 

thermal conductivity keff. The anisotropy of properties caused by the features of 3D printing using the 

FDM method has a great influence on the results of experimental studies. In particular, when studying 

the thermal conductivity of samples in which the rasters are laid along and perpendicular to the 

direction of the heat flow, differences in measurements can reach 50%. It is worth noting that the 

smallest deviation from the thermal conductivity of the original material is observed when rasters lie 

in the direction of the heat flow. Studies [41,42] show that with optimal raster direction and 100% fill 

ratio, the discrepancy between the thermal conductivities of the original material and the sample does 

not exceed 5–10%. In this work, for an experimental study of thermal conductivity, samples were made 

in which rasters direction coincides with the direction of the heat flow at 100% fill ratio. In this way, 

the error caused by anisotropy is minimized and is acceptable for research purposes. 

If the heat transfer occurs only along z axis, the heat flow Q across any orthogonal section of the 

unit cell is determined as follows: 

 𝒬 =  𝑞𝑆̅̅ ̅𝑆,  (5) 

where  

 𝑞𝑆̅̅ ̅  =
1

𝑆
∫ 𝑞𝑑𝜎
 

𝜎
,  (6) 

𝑞𝑆̅̅ ̅  is average density of heat flux in the cross-section S = ab, q is actual density of heat flux in the 

cross-section 𝜎 = 𝑆(1 − 𝑠), 𝑠 =  𝑆𝑙/𝑆 is specific pore area and Sl is pore area in the cross-section 

under consideration.  

On the other hand, according to Fourier’s law 

 𝑞𝑆̅̅ ̅  =  −𝑘𝑒𝑓𝑓
𝜕𝑢

𝜕𝑧
,  (7) 

It follows from Eq. (4) that for the stationary mode of heat transfer, the temperature distribution in 

the homogenized medium along z coordinate changes according to a linear law. Then the following 

relation is valid  
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 𝑞𝑆̅̅ ̅  =  −𝑘𝑒𝑓𝑓
𝑢2−𝑢1

𝑎
,  (8)                        

where u1, u2 temperatures at the cell boundaries.  

Given that S = ab we have from Eq. (6) and (8) 

 𝑘𝑒𝑓𝑓  =  
𝑞𝑆̅̅̅̅ a

𝑢2−𝑢1
=

∫ 𝑞𝑑𝜎𝜎

𝑏(𝑢2−𝑢1)
  (9) 

To determine the actual value of the heat flux in the cross section that is perpendicular to z axis, we 

use the specific surface of the pores s. Analysis of the dependence s(Z, ∆) (Fig. 8) shows that the pore 

is symmetrical with respect to Z = 0.5 with the equality of s values at Z ∈ [0; 0.5; 1]. This can be 

explained by the fact that the creation of pores in the principal direction leads to the formation of two 

independent pore systems. Obviously, the average density of the heat flux 𝑞𝜎̅̅ ̅  

 𝑞𝜎̅̅ ̅  =
𝑞𝑆̅̅̅̅

1−𝑠
, (10) 

which can be determined from the ANSYS numerical modeling as the average heat flux, is greater 

than the corresponding 𝑞𝑆̅̅ ̅ value at any point of the S cross-section. 

Given Eq. (10), equivalent thermal conductivity is determined as follows:  

 𝑘𝑒𝑓𝑓 =
𝑎𝑞𝜎̅̅ ̅̅ (1 − 𝑠)

𝑢2−𝑢1
, (11) 

 

Fig.  8 Dependence of s on Z = z/a for different values of specific wall thickness ∆ = σ/a along z axis. 

The unit cell shown in Fig. 7 is an RVE–element. Therefore, the determination of its thermal 

characteristics allows one to describe the temperature state of the media consisting of many unit cells 

subject to perfect thermal contact. Obviously, we can obtain structures with specified thermal 
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characteristics by combining the unit cells as well as by changing the wall thickness of the solid shell 

and the cell sizes. 

We applied the following conditions for the CAE modeling of heat transfer in ANSYS:  

(i) heat transfer mode is stationary;  

(ii) heat transfer occurs along one of the axes of the orthogonal coordinate system (specifically z 

axis);  

(iii) the first-kind boundary conditions, temperatures u1 = 0 ◦C, u2 = 100 ◦C, are set on the upper and 

lower faces of the solid shell, respectively (Fig. 7);  

(iv) adiabatic wall condition is set on the entire surface of solid shell except the top and bottom 

faces;  

(v) the thermophysical properties of solid shell are known (Table 2). 

Table 2 Thermophysical properties of the SBS filament. 

Material characteristics Value Unit 

Type of material SBS  

Conductivity coefficient 0.2 Wm-1◦C 

Heat capacity 1,000 Jkg-1◦C 

Density 1,010 kgm-3 

 

Based on condition (ii), it follows that the heat transfer along x and y axes can be ignored. According 

to condition (iv) we neglect convective heat transfer. This assumption does not significantly affect the 

accuracy of modeling for natural convection in the pore space (at a < 5 mm). 

The calculation results for the scalar temperature field (Fig. 9) and the vector field of heat flux 

(Table 3) enabled us to study the behavior of keff when changing the unit cell size (a) and the wall 

thickness (σ) of the material.  
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Fig.  9 Scalar temperature fields from 0 ◦C (navy blue) to 100 ◦C (red) for JSW–, MER–, SAS–, LTA–, 

ATN–, BCT–, RHO–, SOD–based structures a) –h), respectively. 

Table 3 Average heat flux Eq. (10) for the scalar temperature fields. 

 Wm-1◦C 

Structure Along z axis Along x axis 

JSW 3,764 6,842 

MER 3,497 4,873 

SAS 2,843 4,025 

LTA 3,893 3,893 

ATN 3,421 9,217 

BCT 3,873 6,177 

RHO 3,836 3,836 

SOD 3,674 3,674 

 

The dependence 𝑘𝑒𝑓𝑓(∆) is linear (Fig. 10), while scaling the unit cell results in a proportional 

change of 𝑘𝑒𝑓𝑓; for example, 𝑘𝑒𝑓𝑓(∆) = 2𝑘𝑒𝑓𝑓(2∆). The relationship between volume and surface area 

as the size of the TPMS increases or decreases has been described by the square-cube law. 

Analysis of Fig. 10 shows that a required value keff can be obtained by changing the wall thickness 

σ or unit cell size a. For example, value 𝑘𝑒𝑓𝑓 = 0.0159 for MER–based material along z axis can be 

obtained at relative pore wall thickness ∆ = 0.03, which can be defined as 
𝜎

𝑎
 =

0.15

5
=
0.3

10
 etc. Therefore, 

a material with calculated thermophysical properties can be created by changing structural 

macroparameters of the unit cell. 
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Fig.  10 Dependences of the effective thermal conductivity on relative wall thickness for surfaces from 

Table 1; white circles are experimentally obtained data on the effective thermal conductivity of a SOD–

based structures. 

When choosing the configuration of a porous structure, it is necessary to specify strength indicators. 

Thus, shrinking the unit cells leads to hardening the structure. On the other hand, enlarging the unit 

cell results in increasing the influence of the convective component. 

In order to verify the adequacy of the modeling results, an experimental verification was performed. 

Using additive printing technology, the panel of a porous material with a size of 200×200×20 mm was 

made by the TOTAL Z Anyform L250G3-2X printer by FDM method (Fig. 11). When printing, the 

SBS filament with the properties specified in Table 2 was used. The printing was done with 

recommended settings: layer height – 0.15 mm; print speed – 15 mms-1; nozzle temperature – 220 ◦C. 
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Fig.  11 A sample made of the SOD–based porous structure manufactured from SBS by FDM method. 

Determination of thermal conductivity coefficients 𝑘𝑒𝑓𝑓 was carried out on a certified experimental 

setup ITP-MG4, which included a fridge and a heater to keep constant temperatures u1, u2 on the 

surfaces of the test sample. Thermal conductivity coefficient 𝑘𝑒𝑓𝑓  was determined according to 

relation Eq. (7) with an error of no more than 5%. By approximating theoretical and experimental data 

we obtained a relation for determining the value of the effective thermal conductivity coefficient at 

different ∆: 

 𝑘𝑒𝑓𝑓(∆)  =  𝐶1∆ + 𝐶2,  (12) 

where C1 and C2 are the fitting constants for the function, which are presented in Table 4. 

Table 4 The fitting constants of thermal conductivity coefficients 𝒌𝒆𝒇𝒇  Eq. (12) for two different 

directions. The fitting constants are measured in Wm-1 ◦C. 

 Along z axis Along x axis 

Structure C1 C2 C1 C2 

JSW 0.286 3.593E-04 0.460 -2.695E-04 

MER 0.366 -3.593E-04 0.542 -3.593E-04 

SAS 0.277 -5.988E-04 0.569 1.018E-03 

LTA 0.245 -4.790E-04 0.245 -4.790E-04 

ATN 0.157 -2.096E-04 0.345 -1.198E-04 

BCT 0.176 -2.994E-05 0.390 2.096E-05 

RHO 0.503 -1.198E-03 0.503 -1.198E-03 

SOD 0.420 -1.800E-03 0.420 -1.800E-03 
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To determine heat capacity and density, we used the porosity ratio, which 𝜙 = 𝑉𝑃/𝑉 is equal to the 

ratio of the pore volume 𝑉𝑃 to the volume of the entire unit cell. For the TPS-based materials the 

porosity 𝜙 = 𝑉𝑃/𝑉, where 𝑉𝑃 is the pore volume, is a linear function of the relative wall thickness: 

 𝜙 = 𝐴1∆ + 𝐴2,  (13) 

where A1 and A2 are the fitting constants for the function.  

Given Eq. (13), volume heat capacity and density are determined by relations:  

 𝒄 =  𝒄𝒎(𝟏 − 𝝓),  (14) 

 𝝆 =  𝝆𝒎(𝟏 − 𝝓),  (15) 

where 𝒄𝒎, 𝝆𝒎 are heat capacity and density of the material, respectively.  

Thus, the paper presents the results of comprehensive studies of porous structures based on TPS. 

The results obtained for SBS can be extended to other structures and other forms of the unit cell. 

Relations Eq. (12) – (15) enable one to determine the properties of the designed structure with high 

accuracy without performing additional calculations. 

 

4 Experimental and numerical study of main mechanical properties of the obtained porous 

structures 

Investigation of the mechanical properties of the atomic RVEs structures described in Sec. 2 porous 

samples were manufactured by additive technology from photopolymer resin “Phrozen Aqua-Gray-

Resin” (polyamide PA-12) (Fig.11) with the properties given in Table 5. The samples are single RVEs 

for MER–based and JSW–based structures (see Fig. 12) sewed in three orthogonal directions in the 

amounts of 2×2×2, 3×3×3, and 4×4×4. Single RVEs have L×W×H of 10.63×8.83×10.63 mm and 

8.14×8.14×4.91 mm for MER–based and JSW–based structures, respectively. The wall thickness in 

the samples is 0.2 mm. 

Using Phrozen Sonic Mighty 4K LCD photopolymer printer we produced several samples by 

method of layer-by-layer solidification under UV according to recommended settings: layer maximum 

height – 0.05 mm; number of acceptable substrate words – 6, substrate illumination time – 50 s; 
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remaining layers illumination time – 5 s; maximum lifting height – 8 mm; lifting and retraction speed 

– 60 mmmin-1 and 150 mmmin-1, respectively.  

Table 5 Properties of the PA-12 material. 

Property Value Unit 

Density 1.27 gcc-1 

Viscosity 1.5 poise 

Tensile elongation 7 % 

Tensile strength 0.02 GPa 

Hardness 623 Vickers 

Tensile modulus 0.192 GPa 

Notched Izod impact strength 6,780 Jm-2 

 

Mechanical properties of specimens manufactured from PA-12 significantly depend on the 3D 

printing mode. Before studying porous samples, experimentally measurement of the mechanical 

characteristics of PA-12 after 3D printing procedure is necessity. For this purpose, several solid 

rectangular parallelepipeds the sizes of which are indicated above were manufactured using the same 

technology and equipment.  

Following other recent studies porous structure [7–14] we have carried out the compression tests 

on our samples in order to experimentally measure their mechanical moduli. Tensile testing machine 

SHIMADZU was used for measurement of the compression characteristics of all samples in the 

automatic mode. Rate of compression was 1 mm/min. All measurements errors were less than 0.01%.  

Stress-strain curve obtained experimentally was averaged for all similar solid samples. Linear 

incensement of strain revealed at low deformation stress and plastic strain area on the graph up to the 

stress of 49.33 MPa. For such materials this behavior is typical [43].  

Using experimental data, the average value of the elastic compression modulus was Ec = 1.07 ± 

0.04 GPa in the range ε = 1–3% and the Poisson ratio as approximate equal 0.4. This value falls within 

the acceptable range of this characteristic for a polyamide polymer at standard room temperature [43].  
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JSW–based and MER–based samples (Fig. 12, a) and b), respectively) were investigated using a 

similar experimental technique as for continuous samples. The experimental loading curves are shown 

in Fig. 13. The position of the curves depends on the number of RVEs in the sample, and curves with 

different numbers of RVEs are similar. The difference in the shape of the curves for the MER-based 

and JSW–based samples is due to the difference in the topological and geometric features of 

corresponding surfaces, given in Table 1. It can be seen from the Fig. 13 that the MER–based sample 

is characterized by the presence of an elastic deformation region and a slow growth to a maximum 

before failure. The JSW–based curve contains a pronounced maximum after the elastic section and 

subsequent oscillations before destruction. Both of these types of curve behavior take place for known 

porous materials obtained on the basis of triply periodic surfaces different from ours [1,11].  

 

Fig.  12 Samples made of the a) JSW–based and b) MER–based porous structures manufactured from 

PA-12. 
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The experimental compression moduli Ec were obtained by the slope’s averaging of the curves 

within strain of 1–2% (Fig. 13). These experimental values are shown in Table 6 together with the 

results of the corresponding finite element (FE) calculations.  

We note a fairly good agreement between the experimental and theoretical results for the 

compression moduli, which indicates the adequacy of the chosen theoretical model. 

Table 6 The experimental and numerical elastic compression modules Ec for MER and JSW samples 

(Fig. 12). The compression module is measured in MPa. 

 Ec, (MER) Ec, (JSW) 

Samples Experiment FE calculation Experiment FE calculation 

2×2×2 6.10 ± 0.21 6.03 7.63 ± 0.25 7.53 

3×3×3 11.95 ± 0.42 12.03 8.43 ± 0.28 8.32 

4×4×4 14.79 ± 0.49 14.86 11.76 ± 0.39 11.64 

 

 

Fig.  13 Compressive stress–strain curves for a) MER–based and b) JSW-based samples with different 

numbers of RVE (see Fig. 12); upper curves (blue) are 4×4×4 samples, middle curves (orange) are 

3×3×3 samples, lower curves (violet) are 2×2×2 samples. 

The FE software ANSYS was used for the numerical modelling of compression test in order to find 

the elastic properties of porous samples MER–based and JSW–based samples, as well as for predicting 

mechanical properties of other porous materials (see Table 1) when changing their stress-strain state, 

and their geometrical parameters. Our simulation contains two main features. First, we considered 

polyamide as a material belonging to the class of hard rubbers, and only elastic deformations of this 

initial material were taken into account at modeling the mechanical properties of porous samples. 

Second, the patch control method was chosen as a method for generating a finite element grid using 
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tetrahedron elements with an average size close to 0.7 mm. But shell finite elements with a slightly 

smaller size were used to simulate RVE for 4×4×4 samples. A fairly good agreement between the 

results of theoretical calculations in the described model and experiment (see Table 6) makes it 

possible to model the mechanical properties of other porous materials based on TPS from Table 1 in 

the same way. 

So, the distribution of von Mises mechanical stresses calculated by the FE method is shown in Fig. 

14 for different single RVE. It can be seen from Fig. 14 that the stresses are distributed rather uniformly, 

that is apparently explained by the proximity of the surfaces constructed in this work to the minimum 

ones, as we discussed in Section 2 (see also Ref. [34]). Recall that our smoothing procedure from 

Section 2 includes the minimality mean surface curvature condition. 

The components of the compression and shear modules, as well as the Poisson’s ratios for a single 

RVE (Fig. 14) are presented in Table 7. For all single RVEs, the elastic compression modules E11, E22, 

E33 were calculated along main axes (Fig. 14). The Poisson coefficients ν and shear modulus G for the 

unit RVEs were calculated using standard equations: 

 Gij  =
𝜏ij

𝜃ij
, 𝜈ij =

𝜀trans(i)

𝜀axial(j)
,  (16) 

where τ is tangential stress, θ is tangential relative deformation, εtrans and εaxial are transverse and 

longitudinal relative deformations, respectively. 

However, it should be noted that all these calculations were made for the fixed thickness of the 

sample walls and the same initial material and are not have universal meaning. Nevertheless, the data 

in Table 7 can be used to evaluate the mechanical properties of porous materials relative to each other. 

For example, the isotropic RHO–based structure is the most stiffness in compression, the MER–based 

structure also exhibits greater stiffness in compression along one of the directions, the ATN–based 

structure is the most compliance in compression and the BCT–based structure has the highest shear 

resistance. Only LTA–based and RHO–based TPMS have identical mechanical parameters along 

principal axes, while remaining structures have substantially anisotropic behavior. 
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Fig.  14 Distribution of von Mises stresses in modeling compression in the ANSYS software by the 

finite element method for different single RVE with relative compressive deformation of 3%. JSW–, 

MER–, SAS–, LTA–, ATN–, BCT–, RHO–based structures are a) – g), respectively. Reds are the areas 

with the highest stress, blues are with the lowest ones. 
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Table 7 Mechanical characteristics of single RVE (see Fig. 14) obtained from the FE method. E11, E22, 

E33 – compression modules along the principal axes. The orientation in 3d space of the unit RVEs is 

shown in Fig. 14. Poisson’s ratios ν and shear moduli G defined by Eq. (16). The thickness of the wall 

is 0.2 mm. Units of modules is MPa. 

Structure E11 E22 E33 G12 G23 G31 𝜐12 𝜐13 𝜐23 

JSW 13.58 11.25 6.98 0.71 5.6 6.24 -0.10 0.79 0.73 

MER 12.29 20.30 12.37 4.73 4.73 6.82 0.21 0.59 0.34 

SAS 1.37 5.68 1.38 4.49 4.51 6.55 0.10 0.87 0.41 

LTA 4.18 4.18 4.18 2.66 2.66 2.66 0.42 0.42 0.42 

ATN 0.66 3.80 0.66 4.84 4.86 6.95 0.04 0.96 0.20 

BCT 9.18 3.78 9.18 7.91 7.84 14.01 0.52 0.61 0.22 

RHO 17.93 17.93 17.93 2.68 2.68 2.68 0.33 0.33 0.33 

 

To obtain more universal estimates of the mechanical properties of the porous structures listed in 

Table 1, we used the well–known Gibson–Ashby relation [1]: 

 
𝐸∗

𝐸mat
= (

𝜌∗

𝜌mat
)
𝛼

,  (17) 

where, in one hand, 𝐸∗ is the compression modulus 𝜌∗ is the average density of the porous structure, 

and in another 𝐸mat  is the compression modulus 𝜌mat  is the density of the initial material; α is a 

topological–geometrical parameter, depending mainly on the properties of the TPMS. 

As can be seen, the functional relation Eq. (17) does not depend on the type of the initial material, 

but is determined by the geometrical and topological characteristics of the porous structure. The main 

purpose of the Gibson–Ashby analysis in our work is to compare the mechanical properties of porous 

samples with different topological and geometrical structures. In this regard, we perform the 

appropriate calculations only for single RVEs with topological and geometrical parameters listed in 

Table 1. Modeling is carried out at small relative deformations during compression in the range of 1–

3%. 

The mechanical properties of the skeleton material were described only by its linear (elastic) moduli. 

Interesting problems of taking into account nonlinear effects, fatigue effects, as well as experimental 

verification of the results are beyond the scope of our paper. The results of the analysis of our 

calculations using the Gibson–Ashby relation Eq. (17) in the case of compression along the x and y 

axes are shown in Fig. 15. The mutual arrangement of the lines in Fig. 15 corresponds to the trend of 
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the values in Table. 7 and is similar to the results from article [11], in principle. Note that the close 

lines in Fig. 15 can describe the properties of porous structures, the characteristics for which from 

Table 1 can be very different. This means that a more detailed description of the topological and 

geometric properties of the surfaces is required in order to establish correlations between the 

topological-geometric properties of triply periodic surfaces and the mechanical properties of the 

corresponding porous materials. This will be done by us in the future. Nevertheless, the results shown 

in Fig. 15 can be used in engineering practice when choosing structural materials with optimal physical 

and mechanical properties, for example. 

 

Fig.  15 The results of the analysis of the mechanical properties of single RVE from Fig. 14 using the 

Gibson–Ashby relation (17) in the case of compression a) along the x–axis and b) along the y–axis; 

line with triangles down (red) is dependence for JSW–based structure at compression along z–axis. 

An important feature of porous structures is the ability to absorb the strain energy [7–14]. We 

calculated the dependence of the strain energy density on the relative density for the porous structures 

constructed in our work (see Table 1). The calculations were carried out for the case of compression 

along the x and y axes. The results of the calculation are shown in Fig. 16. When comparing Fig. 15 

and Fig. 16 it can be seen that the sequence of lines is the same. That is, the strain energy density 

absorbed by the porous structure corresponds to its stiffness. However, the relative distance between 

the lines in Fig. 15 and Fig. 16 can vary significantly. Thus, porous structures with almost the same 
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stiffness can absorb different amounts of strain energy. For example, this is clearly seen when 

comparing the upper groups of lines in Fig. 15 b) and Fig. 16 b). 

 

Fig.  16 Dependence of the strain energy density on the relative density of the porous structure under 

compression along the x and y axes (a) and b), respectively); legend is the same as in Fig. 15a. 

In total, Fig. 15 and 16 can be noted that the effect of the topology and geometry is more evident at 

smaller relative densities of porous materials and as the relative density increases, the all lines 

converges and the effect of the topology and geometry becomes less explicitly. 

 

5 Conclusions 

In this paper, porous structures are generated based on triply periodic surfaces (TPS) and their 

thermal and mechanical properties are studied. To generate porous structures, a method previously 

developed by the authors is used. Construction of porous structures in developed approach is carried 

out by three following procedures. First of them creates TPSs from a topological description of atom 

networks of the natural crystals by ToposPro software package. These TPSs are formed by polygons 

and divide the space in two disconnected parts. Other procedure performs smoothing TPS from the 

minimality condition of average curvature. Finally, after giving the surface some thickness, it is 

converted into a format used in 3D printing and in the most common application packages like ANSYS. 
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The developed approach makes it possible to generate, in fact, an unlimited number of new TPSs, on 

base of which new porous structures, composites, and metamaterials can be construct.  

A database of constructed TPSs and corresponding tools have been built in the present paper. 

Investigation of thermal and mechanical properties of eight porous macroscopic structures generated 

from crystals of zeolites was conducted. These structures are varied by topological type, genus, spatial 

groups, topology of labyrinth nets, Hopf’s nets topology, and balance properties. Samples of three of 

these structures were manufactured by 3D printing from SBS filament and polyamide PA-12 for 

experimental study and verification of numerical models.  

We calculated scalar temperature fields, heat flux vector fields, as well as coefficients of effective 

thermal conductivity at different conditions for all obtained in our work samples. In particular, linear 

dependence of effective thermal conductivity coefficient on relative thick-ness walls of porous samples 

was identified. The thermal properties were modeled using the ANSYS software. Results of 

calculations are in good agreement with experiments.  

Mechanical characteristics of porous samples were measured experimentally and elastic 

compression moduli and loading curves were obtained. Obtained dependencies are similar to ones for 

porous structures from other works. The numerical calculation of elastic compression moduli in the 

ANSYS software showed very good agreement with experiment. Numerical modeling of mechanical 

properties was performed for all porous structures obtained in our work. The components of the 

compression and shear modules, as well as the Poisson’s ratios were calculated. The analysis of our 

results was carried out using the Gibson-Ashby relation and the dependence of the relative 

compression moduli on the relative density was obtained. In addition, the densities of strain energies 

were calculated as the functions of the porous structure’s relative densities.  

Thus, the results presented in the article indicate the effectivity of our method for constructing TPS 

and corresponding porous structures based on atomic networks of natural crystals, and also provide 
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the opportunity to select the most suitable structures for engineering applications from among ones 

considered in the article in terms of their thermal and mechanical properties. 
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